

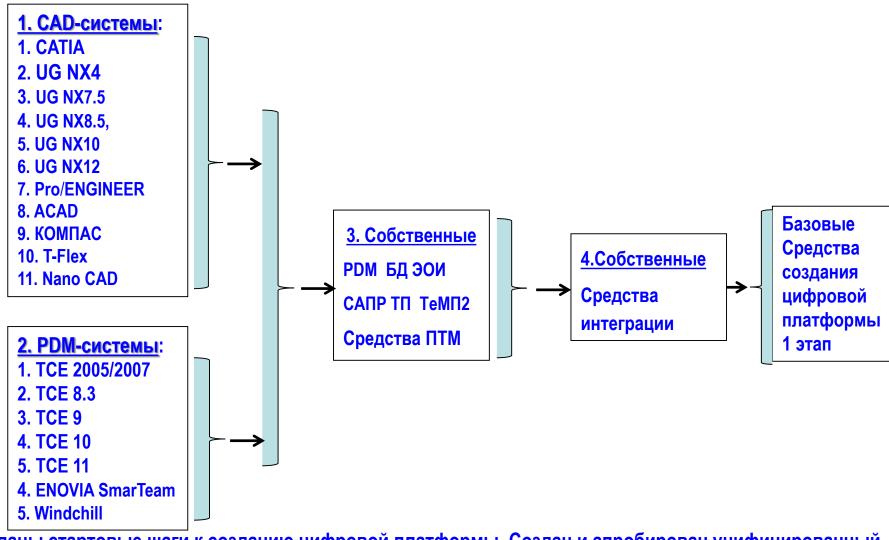
ШАГИ К ЦИФРОВОЙ ФАБРИКЕ

Назаров Владимир заместитель начальника УИТ АО «Авиастар-СП»

IV Международный авиационный IT форум России и СНГ- 2018 НОЯБРЬ, 2018

Г. МОСКВА НОЯБРЬ, 2018

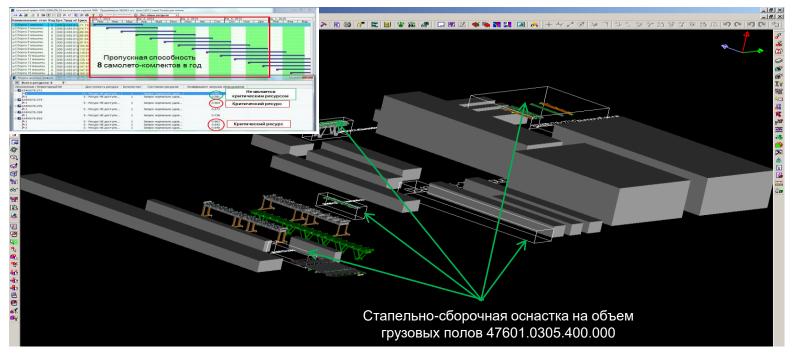
Цифровые фабрики – прототип нового технологического уклада



Из материалов соруководителя рабочей группы «Технет» Национальной технологической инициативы Боровкова А. И. Эти подходы легли в основу стратегии создания цифровой экономики РФ.

<u>Цифровая платформа (экосистема) фабрики</u>. Шаги к созданию

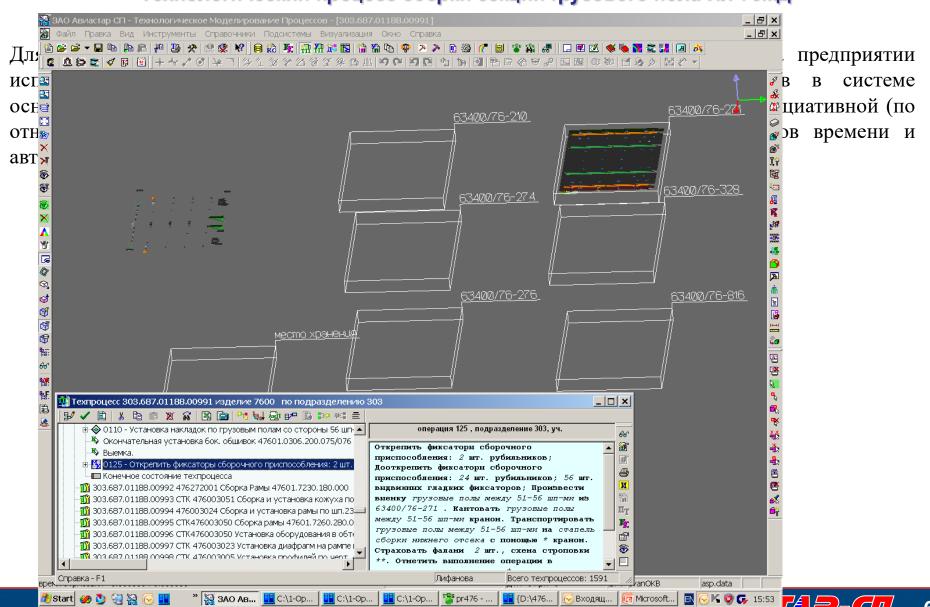
- 1. Особенности реальных условий, определяющие подходы к решению
 - Внешняя среда в условиях кооперации, лучшие средства и технологии, тренды
 - Определение подходов интеграции в мультиплатформенное окружение
 - Реализация пилотных проектов развития базового системообразующего и прикладного ПО
 - Импортозамещение и снижение затрат при соответствии уровню лучших практик
 - Поддержка проектов и взаимодействие с кооперантами, имеющими разный цифровой уровень
- 2. Внедрение в реальных продуктовых проектах (Ил-76МД, MC-21, SSJ -100, Ил-112, Ил-
- 114, Ту-160, Ту-204, Ан-124), соответствующих уровню лучших отечественных решений
 - Интегрированы и внедрены CAD-системы UG NX, CATIA, ACAD, T-Flex, Nano CAD
 - Внедрены унифицированные базовые собственные разработки АС КТПП PDM БД ЭОИ/ТеМП2, исключающие недостатки западных PDM и имеющие аналогичный функционал
 - Внедрены унифицированные решения по информационному взаимодействию с кооперантами
 - Отработаны решения по созданию производственно-технологических моделей (прообраз цифровых двойников (ЦД) для проектных стадий и теневых ЦД
 - Внедрены «технологии сквозных процессов» обеспечения взаимодействия на всех этапах ЖЦИ


Цифровая платформа (экосистема) фабрики. Шаги к созданию

Сделаны стартовые шаги к созданию цифровой платформы. Создан и апробирован унифицированный импортозамещающий комплекс инструментальных средств моделирования производственной системы на этапах ЖЦИ для ограниченного количества целевых показателей.

<u>Разработка систем цифровых моделей изделий и процессов</u>. Шаги к созданию. Производственно-технологическая модель (ПТМ)

ПТМ - параметризованная модель, описывающая состояние производственной системы **КБ**, **предприятия**, **участка для разных стадий ЖЦ изделия** на основе увязанных конструкторско-технологических данных, которая позволяет отобразить прогнозное и текущее состояние производственной системы под заданное количество показателей для конкретной стадии ЖЦ в определённый период времени.



ПТМ позволяет:

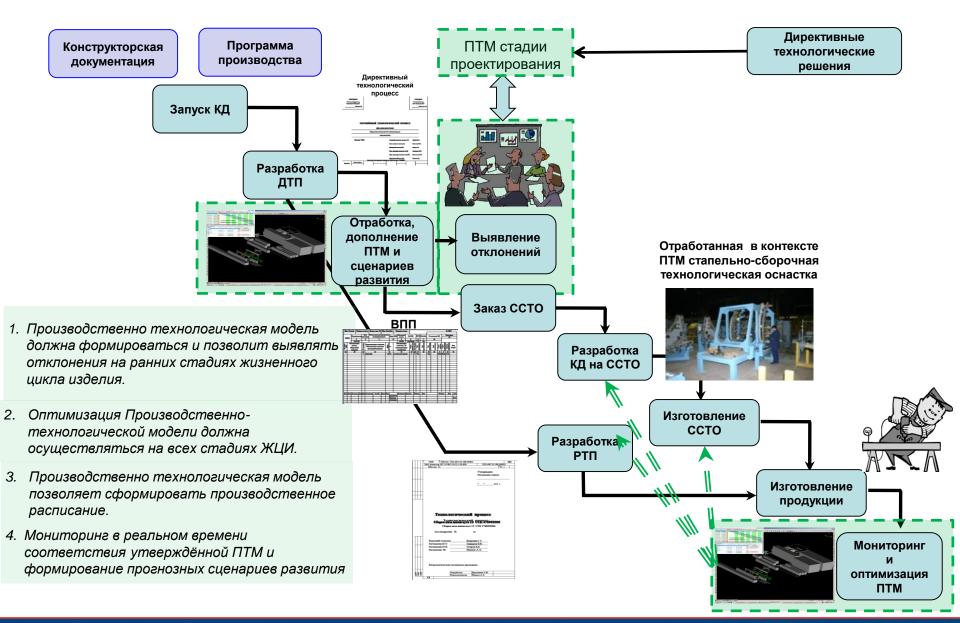
- Сформировать производственное расписание, отобразить ситуацию при выполнении заданной производственной программы, критические параметры и 3D просмотр данного процесса;
- > Сформировать план набора численности персонала и режим работы под заданную производственную программу;
- > Сформировать план заказа инструмента, оснастки, оборудования;
- Произвести расчет затрат.

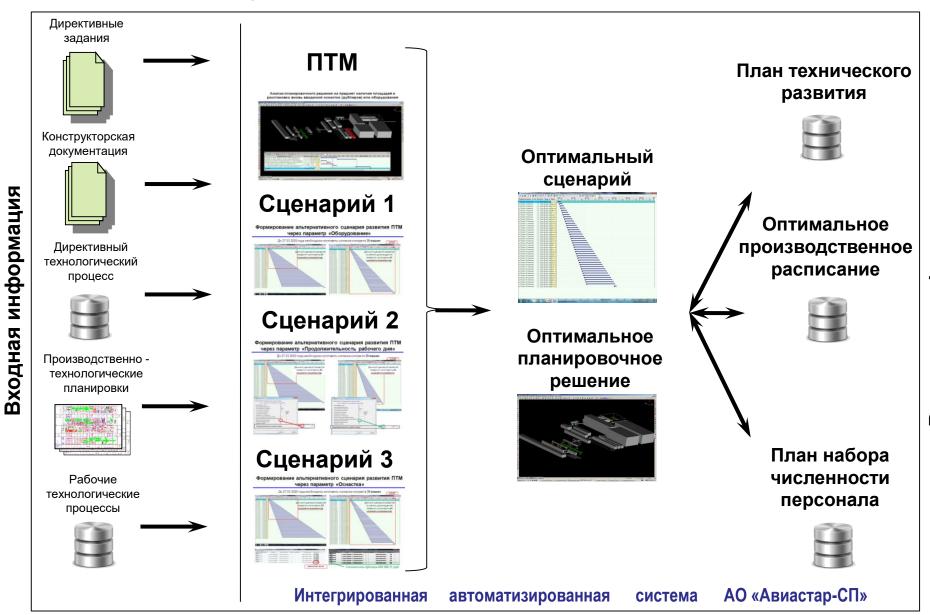
Технологический процесс – основа ПТМ

Технологический процесс сборки секции грузового пола Ил-76МД

Параметры для формирования альтернативных сценариев ПТМ при отработке изделия на производственную технологичность

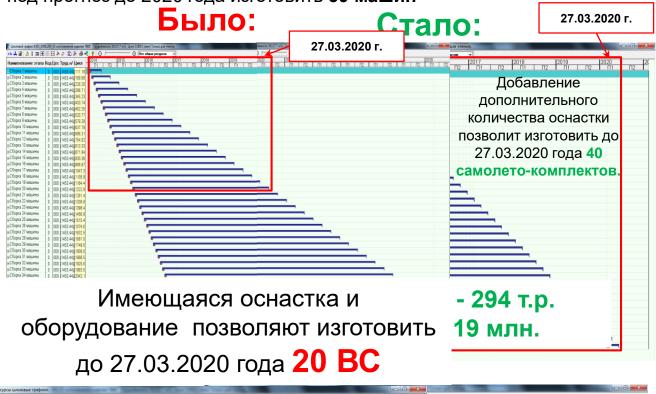
Изменяемые параметры для формирования альтернативных сценариев ПТМ и утверждения Производственного Расписания:

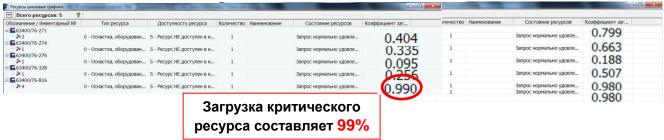

- снастка;
- борудование;
- Трудоемкость;
- Количество персонала;
- Продолжительность рабочего дня;
- Производственная площадь.



Этапы отработки изделия на производственную технологичность на основе ПТМ

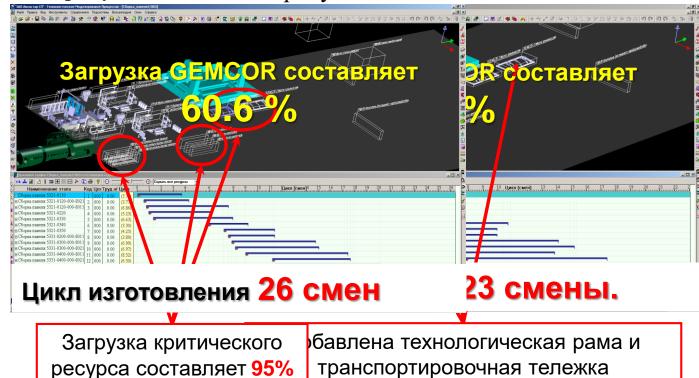
(платформа отработана для количества используемых параметров на стадии технического проекта)




Схема создания оптимального сценария развития производственно-технологической модели

Реализованные предложения и мероприятия на участке сборки грузовых полов отсека Ф-2 Ил-76МД-90A

Сформирована оптимизированная производственно-технологическая модель под прогноз до 2020 года изготовить **39 машин**

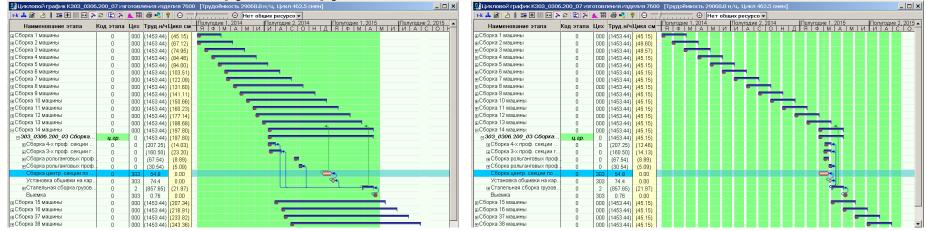

На стадии производства продукции выявлены и устранены критические ресурсы не позволяющие увеличить пропускную способность линии сборки.

Реализованные предложения и мероприятия.

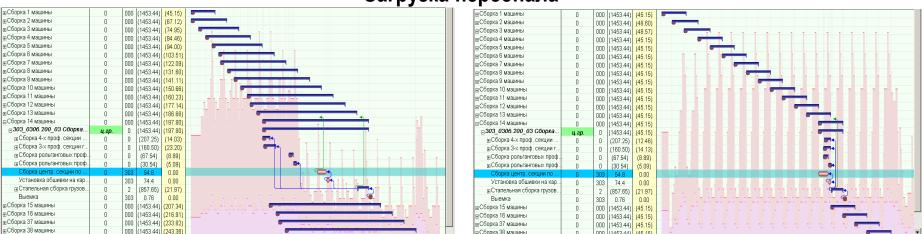
Сформирована производственно-технологическая модель и проведен анализ проекта линии сборки комплекта панелей фюзеляжа МС-21

Было: Стало:

Пропускная способность вувения способность 10 вс в год


На этапе проектирования линии сборки

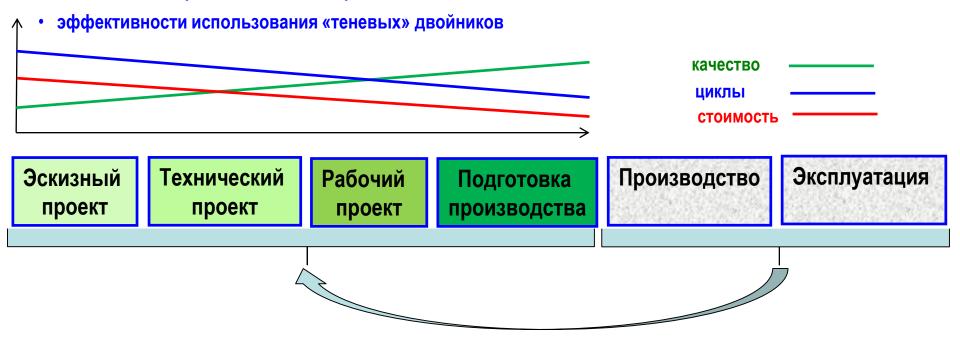
выявлены и устранены критические ресурсы, не позволяющие увеличить пропускную способность линии сборки до 10 ВС в год при минимальных затратах.


Реализованные средства ПТМ

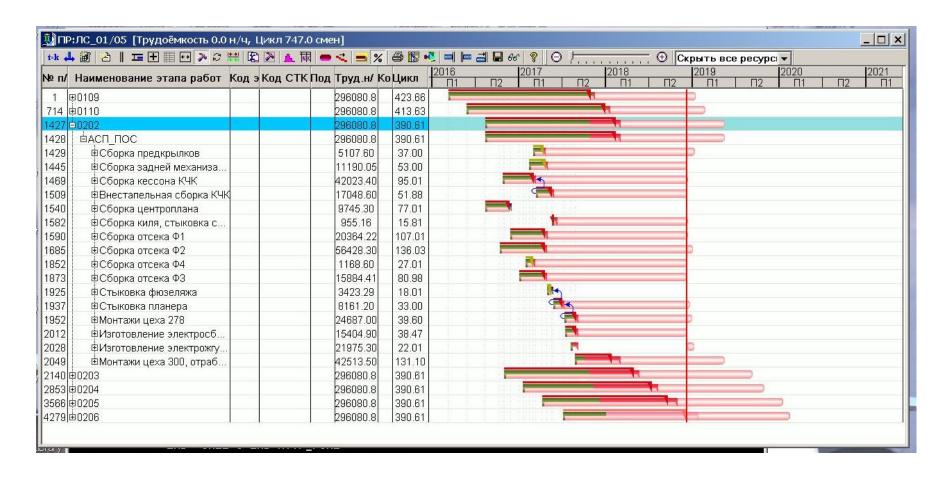
Реализованы методика и алгоритмы для анализа и оптимизации загруженности ресурсов в ПТМ

Загрузка оборудования и технологического оснащения

Загрузка персонала

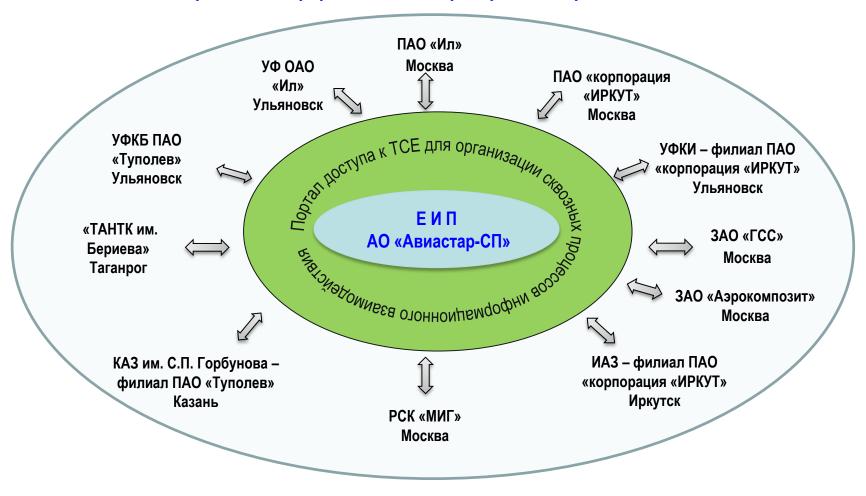

Функционал позволяет выявить несимметричность загруженности ресурсов, оптимизировать сроки поставки комплектующих и загруженность персонала, сократить издержки

Отработка изделия на производственную технологичность.


Целевые показатели цифровых моделей изделий и процессов (цифровых двойников). Шаги к созданию

Уровень, качество отработки изделия на производственную технологичность прямо зависит от

- уровня развития и внедрения технологий виртуального моделирования, в т.ч. испытаний
- количества показателей в матрицах целевых показателей и ограничений в модели
- качества показателей в матрицах целевых показателей и ограничений в модели
- полноты модели для ранних стадий создания
- взаимной интеграции показателей разных стадий создания изделий


Разработка систем цифровых моделей изделий и процессов. Шаги к созданию и использованию теневого цифрового двойника

Экспертиза соответствия элементов теневого цифрового двойника эталонному цифровому двойнику производственной системы сборочного участка

<u>Цифровизация на этапах ЖЦИ</u>. Информационное взаимодействие АО «Авиастар-СП» с разработчиками АТ и кооперантами. Стартовые шаги.

АО «Авиастар-СП» в информационном пространстве проектов ПАО «ОАК»

ЭТАПЫ ЖЦИ в ЗАО «Авиастар-СП»

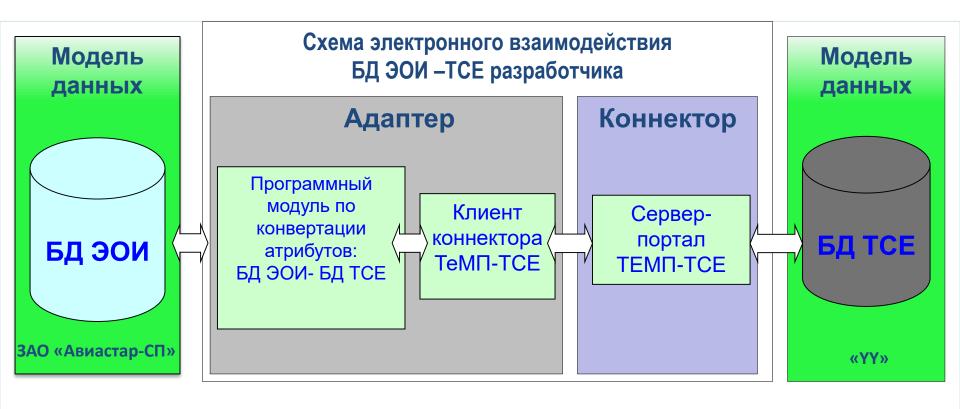
проектир ование

Конструкторская подготовка производства Технологическая подготовка производства

Производство

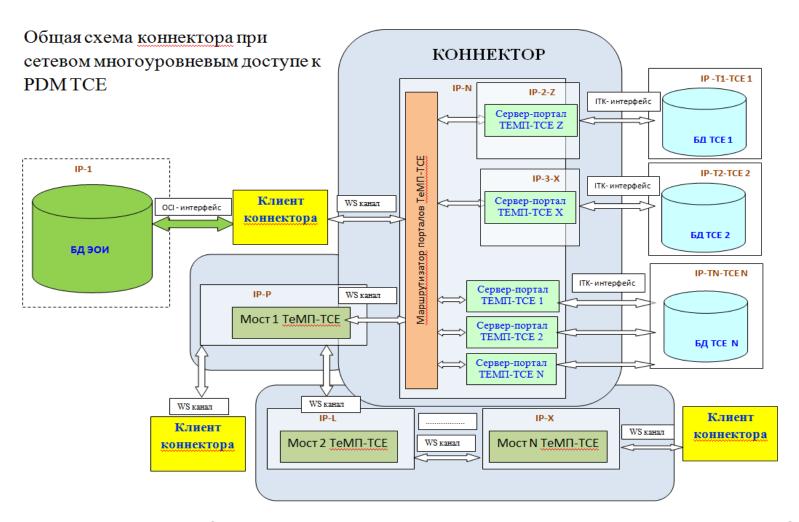
Поддержка в эксплуатации

Вариант архитектуры АС КТПП, на платформе PDM TCE для изделий Ил-76, MC-21, SSJ-100, Ил-112, Ил-114, Ту-160 ...


Принципы информационного взаимодействия АО «Авиастар-СП» с разработчиками АТ и кооперантами

- 1. Независимость от:
 - модели данных КД разработчика
 - версий программного обеспечения разработчика, в том числе и TCE и ORACLE
 - организационных структур участников кооперации
- 2. Функционально полная работа удалённых кооперантов АО АВИАСТАР-СП с PDM завода.
- 3. Автоматизация приёма, передачи и контроля передаваемой ЭКД
- 4. 100% аутентичность принятой информации ЭКД разработчика за счёт применения контрольных сумм (КС) на каждый элемент единицы ЭКД (атрибуты формы, наборы данных, структура изделия).
- 5. Сохранения КС ЭКД на всём жизненном цикле
- 6. Унификация информации при приёме ЭКД (перекодировка стандартных изделий).
- 7. Возможность передавать (экспортировать) ЭКД в исходную версию ТСЕ или любую более высшую версию ТСЕ.
- 8. Минимальная зависимость от сторонних и западных фирм разработчиков.
- 9. Оперативность в модификации программного обеспечения и настройки на нового кооперанта
- 10. Минимальная стоимость поддержки и эксплуатации данного решения (техника, персонал, лицензии)
- 11. Обеспечение процессов информационного взаимодействия на всех этапах жизненного цикла изделия:
 - на этапе проектирования и изготовления опытных образцов
 - конструкторско-технологической отработки
 - на этапе серийного производства и послепродажного обслуживания

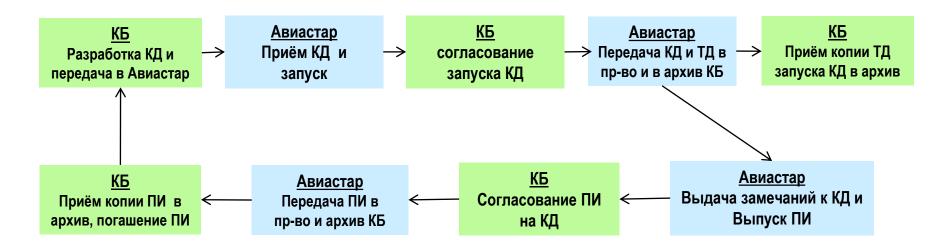
Средства разработки сквозного процесса информационного взаимодействия


Для реализации принципов построения ИВ были выбраны следующие продукты и программные компоненты:

- в качестве <u>базовой PDM</u> выбрана PDM собственной разработки БД ЭОИ, построенная на основе промышленной СУБД Oracle.
- в качестве инструмента <u>работы с сайтами TCE</u> выбрана одна из компонент системы TeMП, портал TeMП- TCE, совместной разработки специалистов МАТИ и AO Aвиастар-CП.
- адаптеры структур передаваемой ЭКД собственной разработки,

Сетевой многоуровневый Коннектор

Решение на основе коннектора ТеМП-ТСЕ при многоуровневом (сетевом) клиенте PDM ТСЕ

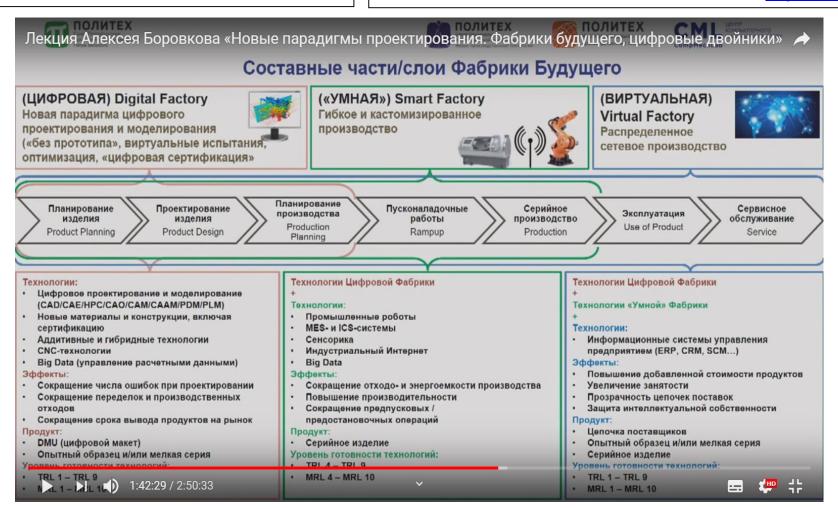

Маршрутизатор порталов ТеМП- TCE может выступать как в качестве модуля управления порталами ТеМП-TCE, так и в качестве мостов (шлюзов) при сложных сетевых конфигурациях работы системы ТеМП и TCE.

Архитектура АС КТПП для изделий Ил-76, MC-21, SSJ-100, Ил-112, Ил-114, Ту-160 ... реализованная в АО «Авиастар-СП»

Информационное взаимодействие АО «Авиастар-СП» с разработчиками АТ и кооперантами. Цифровизация на этапах ЖЦИ. Стартовые шаги.

Схемы *сквозных процессов* (WorkFloW) информационного взаимодействия АО «Авиастар-СП» с разработчиками КД изделий при передаче КД в АО «Авиастар-СП» и проведении изменений

Отработанные стартовые унифицированные решения непрерывно развиваются и обеспечивают:


Быструю настройку под требования новых кооперантов на уровне: документов, данных, процессов, организационных структур и программных платформ Моделировать производственную систему на базе основных целевых показателей Контроль основных показателей при отработке изделия на производственную технологичность

Дальнейшие шаги

Востребованность ключевых технологий «Цифровой революции» (Интернет вещей, Большие данные, Кибер-физические системы, Регламенты

- 1. «Быстрые шаги»→ Лучшие практики→ Регламенты ...
- 2. Сертификация («Цифровая сертификация»)
- 3. ...

Боровков А.И.

СПАСИБО ЗА ВНИМАНИЕ!